New polynomial analogues of Jacobi's triple product and Lebesgue's identities
نویسندگان
چکیده
منابع مشابه
New Polynomial Analogues of Jacobi’s Triple Product and Lebesgue’s Identities
In a recent paper by the authors, a bounded version of Göllnitz's (big) partition theorem was established. Here we show among other things how this theorem leads to nontrivial new polynomial analogues of certain fundamental identities of Jacobi and Lebesgue. We also derive a two parameter extension of Jacobi's famous triple product identity.
متن کاملq-HYPERGEOMETRIC PROOFS OF POLYNOMIAL ANALOGUES OF THE TRIPLE PRODUCT IDENTITY, LEBESGUE’S IDENTITY AND EULER’S PENTAGONAL NUMBER THEOREM
X iv :m at h/ 02 03 22 9v 1 [ m at h. C O ] 2 2 M ar 2 00 2 2000]Primary 05A19, 33D15 q-HYPERGEOMETRIC PROOFS OF POLYNOMIAL ANALOGUES OF THE TRIPLE PRODUCT IDENTITY, LEBESGUE’S IDENTITY AND EULER’S PENTAGONAL NUMBER THEOREM S. OLE WARNAAR Abstract. We present alternative, q-hypergeometric proofs of some polynomial analogues of classical q-series identities recently discovered by Alladi and Berk...
متن کاملAlgebras, Dialgebras, and Polynomial Identities *
This is a survey of some recent developments in the theory of associative and nonassociative dialgebras, with an emphasis on polynomial identities and multilinear operations. We discuss associative, Lie, Jordan, and alternative algebras, and the corresponding dialgebras; the KP algorithm for converting identities for algebras into identities for dialgebras; the BSO algorithm for converting oper...
متن کاملPolynomial identities for partitions
For any partition λ of an integer n , we write λ =< 11, 22, . . . , nn > where mi(λ) is the number of parts equal to i . We denote by r(λ) the number of parts of λ (i.e. r(λ) = ∑n i=1mi(λ) ). Recall that the notation λ ` n means that λ is a partition of n . For 1 ≤ k ≤ N , let ek be the k-th elementary symmetric function in the variables x1, . . . , xN , let hk be the sum of all monomials of to...
متن کاملInterprocedurally Analyzing Polynomial Identities
Since programming languages are Turing complete, it is impossible to decide for all programs whether a given non-trivial semantic property is valid or not. The way-out chosen by abstract interpretation is to provide approximate methods which may fail to certify a program property on some programs. Precision of the analysis can be measured by providing classes of programs for which the analysis ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Applied Mathematics
سال: 2004
ISSN: 0196-8858
DOI: 10.1016/j.aam.2003.09.001